
ATP: In-network Aggregation for Multi-tenant Learning
ChonLam Lao ††, Yanfang Le†, Kshiteej Mahajan†, Yixi Chen††,

Wenfei Wu††, Aditya Akella†, Michael Swift†⇤

Tsinghua University ††, University of Wisconsin-Madison †

Abstract
Distributed deep neural network training (DT) systems are
widely deployed in clusters where the network is shared across
multiple tenants, i.e., multiple DT jobs. Each DT job computes
and aggregates gradients. Recent advances in hardware accel-
erators have shifted the the performance bottleneck of training
from computation to communication. To speed up DT jobs’
communication, we propose ATP, a service for in-network ag-
gregation aimed at modern multi-rack, multi-job DT settings.
ATP uses emerging programmable switch hardware to support
in-network aggregation at multiple rack switches in a cluster
to speedup DT jobs. ATP performs decentralized, dynamic,
best-effort aggregation, enables efficient and equitable shar-
ing of limited switch resources across simultaneously running
DT jobs, and gracefully accommodates heavy contention for
switch resources. ATP outperforms existing systems accel-
erating training throughput by up to 38% - 66% in a cluster
shared by multiple DT jobs.

1 Introduction
Traditional network design relied on the end-to-end princi-
ple to guide functionality placement, leaving only common
needs implemented within the network, primarily routing and
forwarding. However, datacenter networks and workloads
have evolved, and there is a strong case to support common
application functionality within the network [22, 41, 71].

Deep Neural Networks (DNN) are emerging as a critical
component of more and more enterprise applications such as
computer vision [33], natural language processing [26, 67],
databases [65], compilers [66], systems [68], and network-
ing [54]. These applications all require distributed DNN train-
ing (DT) to iteratively train better DNNs for improved predic-
tion performance. Enterprises typically run DT on multi-rack
clusters [12] shared by other applications. Each DT job has
several workers and parameter servers (PS) spread across
several machines. Workers compute gradients and send these
gradients to the PS(s) over the network for aggregation. Gradi-
ent aggregation, which combines partial results from multiple
workers and returns a single aggregated result, is commonly
used in DT, and contributes substantially to overall training
time [48]. Recent advances in special hardware [6, 12] have
shifted the performance bottleneck of distributed training

⇤ChonLam Lao and Yanfang Le are co-primary authors, and Wenfei Wu
is the corresponding author.

from computation to communication [48, 56]: VGG16 train-
ing can be 4X faster without network communication [56].

Further, datacenter networks are becoming feature-rich
with the introduction of new classes of programmable net-
work devices such as programmable switches (e.g., Intel’s
FlexPipe [8], Cavium’s XPliant [13], Barefoot Tofino [4])
and network accelerators (e.g., Cavium’s OCTEON and
LiquidIO products [9], Netronome’s NFP-6000 [10], and
FlexNIC [43]). Together, they offer in-transit packet process-
ing and in-network state that can be used for application-level
stateful computation as data flows through the network.

Current DT stacks implement gradient aggregation purely
in the application. However, the emergence of DT as a com-
mon application and its reliance on gradient aggregation, as
well as the emergence of application-level stateful computa-
tion as a network feature, suggests an opportunity to reduce
training time by moving gradient aggregation inside the net-
work. This reduces network bandwidth consumption from
workers to the PS(s). For both single DT and multiple DT
jobs (i.e., multi-tenant settings) this bandwidth allows pushing
more gradients through the network, and increases the total
throughput of gradient flows thereby reducing training times.

Recent proposals show the initial promise of such in-
network aggregation: e.g., SwitchML [56] increases training
throughput for VGG16 by 2X via in-network aggregation on a
programmable top-of-rack switch. However, the general prob-
lem of making aggregation a true in-network service to be
leveraged by multiple DT tenants in a multi-rack/multi-switch
cluster has not received systematic attention. Realizing such
a service calls for mechanisms to share limited multi-switch
aggregation resources across multiple tenants.

The key goal of our work is to speed up multiple DT jobs
running simultaneously in a cluster by maximizing the bene-
fits from in-network multi-switch aggregation, and distribut-
ing these benefits across multiple DT jobs in an equitable
manner. To do so, we propose a new network service for
multi-rack clusters called Aggregation Transmission Proto-
col, i.e., ATP. ATP supports dynamic aggregation at rack
switches. DT jobs go through ‘on’ and ‘off’ gradient aggre-
gation phases, and ATP uses decentralized mechanisms to
ensure that switch resources used by a DT job entering its off
phase can be dynamically reused by a DT job in its on phase.
ATP supports best-effort aggregation. This enables DT jobs
to gracefully fall back to end-host aggregation under heavy
contention from many tenants without extra overhead.



ATP chunks gradients for each DT job into fixed size frag-
ments that we refer to as gradient fragment packets and par-
titions programmable switch resources into the same fixed
size fragments called aggregators. As these gradient fragment
packets flow through the network, ATP opportunistically ag-
gregates them by accumulating results at the earliest available
programmable switch, or in the worst-case at the PS end-host.

ATP proposes a decentralized aggregator allocation mecha-
nism that supports aggregation at line rate for multiple jobs
by dynamically allocating free aggregators when gradient
fragment packets arrive at a switch. A key issue with an in-
network aggregation service is that traditional end-to-end
protocols do not work when gradient fragment packets are
consumed in the network due to aggregation, as that may
be misinterpreted as packet loss. Thus, ATP co-designs the
switch logic and end host networking stack specifically to
support reliability and effective congestion control.

We opensource ATP’s implementation [2]. Our implemen-
tation works atop clusters using P4-programmable switches.
Such switches expose a limited set of in-network packet pro-
cessing primitives, place ungenerous memory limits on net-
work state, and have a constrained memory model restricting
reads/writes. We overcome these constraints, and show how
ATP can support highly effective dynamic, best-effort aggre-
gation that can achieve 60Gbps. Our implementation also has
mechanisms that improve state-of-the-art floating point value
quantization to support limited switch computation. ATP’s
implementation adopts a kernel bypass design at the end-host
so that existing protocol stacks are not replaced by ATP’s
network stack and non-ATP applications can continue to use
existing protocol stacks.

We run extensive experiments on popular DNN models
to evaluate ATP in a single rack testbed with multiple jobs.
Our evaluation shows that in multi-tenant scenarios, dynamic,
best-effort in-network aggregation with ATP enables efficient
switch resource usage. For example, the performance only
decreases by 5�10% when only half of the desired aggrega-
tors are available, and outperforms current state-of-the-art by
38% when there is heavy contention for on-switch resources.
We simulate multi-rack cluster experiments with a typical
topology and show a 66% reduction in network traffic with
ATP. We benchmark loss-recovery and congestion control
algorithms proposed in ATP. The loss recovery mechanism of
ATP outperforms the state-of-the-art (SwitchML) by 34% and
an ATP job with congestion control speeds up 3X compared
to one without congestion control.

2 Background and Motivation
2.1 Preliminaries
PS Architecture. This design [39, 51, 62] as shown in Fig-
ure 1 enables data-parallel training, where training data is
partitioned and distributed to workers. There are two phases:
gradient computation, where workers locally compute gra-

dients; and gradient aggregation, where workers’ gradients
are transmitted over the network to be aggregated (which in-
volves the addition of gradients) at one or more end-hosts
called parameter servers (PSs). The aggregated parameters
are then sent back to the workers. Gradients are tensors, i.e.,
arrays of values. With multiple PSs, each PS has a distinct
partition of parameters.
Programmable Switch. The recent emergence of pro-
grammable switches provides opportunities to offload
application-level stateful computation [41, 47, 71]. A pop-
ular example is the Tofino switch [4], which we use. Pro-
grammable switches expose memory as stateful and stateless
objects. Stateless objects, metadata, hold the transient state
for each packet, and the switch releases this object when that
packet is dropped or forwarded. Stateful objects, registers,
hold state as long as the switch program is running. A register
value can be read and written in the dataplane, but can only be
accessed once, either for read or write or both, for each packet.
A register is an array of values. In the context of in-network
aggregation, each packet has a subset of gradient values and
needs a set of registers to aggregate them. We call this set of
registers an aggregator.

Programmable switches have constrained compute re-
sources, memory(⇠ 10MB [53]), and programmability for
application-level processing. Register memory can only be
allocated when the switch program launches. To change mem-
ory allocation, users have to stop the switch, modify the switch
program and restart the switch program. The computation flex-
ibility is limited by the number of stages, the payload parsing
capability, and the time budget at each stage: only indepen-
dent computation primitives can be placed in the same stage
and the number of register accessed in the same stage is also
limited. These limits lead to small packet sizes for in-network
computation and storage applications: the payload size of
SwitchML and NetCache is 128B [40, 41, 46, 56] 1.
In-Network Aggregation. Gradients can be seen as a se-
quence of fragments (each fragment has a subset of gradient
values), and aggregation (addition of gradients) of all the
gradients is the aggregation of each of these fragments. In-
network aggregation for each fragment is done in a specific
aggregator. Figure 2 exemplifies this for a DT job with two
workers using one programmable switch. Workers 1 and 2
create packets having a fragment with 3 tensor values and
send them to the switch. Suppose the switch first receives the
packet p1 from worker 1. It stores the tensor values contained
in p1 in the aggregator’s registers R1, R2, R3. The switch
then drops packet p1. When the switch then receives packet
p2 from worker 2, it aggregates the tensor values contained
in p2 with contents of R1, R2, R3. If there were additional
workers, the switch would update the registers with the aggre-
gation of both packets. In this example, because p2 is from

1The exact parameters of programmable switches and ATP are specific
to “Tofino” programmable switches; if other programmable switches have
similar limitations, ATP can be used similarly.



  

PS 1

Parameter Servers (PS)

PS 2

Workers

Worker1 Worker2 Worker3 Worker4

a
1

b
1

a
2

b
2

a
3

b
3

a
4

b
4 Gradients

a
1

b
1

Parameter Servers (PS)

Worker1 Worker2

Worker4 Worker3

a
1

b
1 c

1
d

1
a

2
b

2 c
2

d
2

a
4

b
4 c

4
d

4
a

3
b

3
c

3
d

3

Workers

b
1

c
2

d
3

a
4

All Reduce

a
2
a
3
a
4

b
2

b
3

b
4

Figure 1: Parameter servers (PS)
  

Worker 1

Workers

a
1

b
1

c
1

Switch

R2R1 R3

Packet 1

a
1

R1

b
1

R2

c
1

R3

a
1
 + a

2

R1

b
1
 + b

2

R2

c
1
 + c

2

R3

Worker 2
a

2
b

2
c

2
Packet 2

Register(s)

drop packet 1 write R1, R2, R3
back to packet 2

broadcast back to
worker 1 and 2

after switch received 
packet 1 from worker 1

after switch received 
packet 2 from worker 2

Figure 2: In-network aggregation ex-
ample

0 50 100
Time(10ms)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

Figure 3: A DT job training VGG16
shows on-off communication pattern for
a simple one worker-one PS setting.

the last worker, the switch overwrites the values in packet
p2 with the aggregated result and multicasts p2 to both the
workers. This architectural improvement not only reduces net-
work traffic and eliminates the incast but also saves the CPU
cycles used for aggregation operation at the end hosts. As
this improvement only applies to communication, the overall
training acceleration ratio depends specifically on the ratio of
communication to computation in the DT job [28, 56].

A recent work, SwitchML [56], prototypes this idea for
a single DT job in a rack-scale network. We use SwitchML
as an example to illustrate the design space and underscore
the key attributes of an ideal in-network aggregation service.
SwitchML removes the PS by offloading gradient aggregation
entirely to the top-of-rack switch. It allocates a static pool
of aggregators in the rack switch to a DT job, and streams
gradient fragment(s) from workers to the switch only after
previously sent gradient fragment(s) are aggregated and have
vacated aggregator(s) on the switch. We argue next that de-
sign choices in SwitchML need to be reconsidered in the
multi-job and multi-rack settings, necessitating a systematic
in-network service.

2.2 In-Network Aggregation as a Service
When applied to multiple DT jobs, SwitchML requires static
partitioning of switch resources, where each job is statically
assigned to a partition. In a multi-tenant scenario, this results
in underutilization of switch resources. DT jobs go through
on and off gradient aggregation phases as shown in Figure 3,
and switch resources belonging to a DT job in the off phase
can be shared with a DT job in the on phase in a dynamic
manner, but static partitioning precludes this.

SwitchML offloads gradient aggregation for each DT job
entirely to the rack switch. With heavy switch resource con-
tention, DT jobs have to wait for switch resources leading
to underutilization of the network link bandwidth from the
workers to the PS(s). In a better design, a DT job could instead
aggregate a fraction of gradients at the switch in a best-effort
manner while aggregating the rest at the end-host.

Rack-scale solutions like SwitchML limit job scalibility
and are not optimal in terms of traffic reduction for cross-rack
jobs. Enabling aggregation service at every layer of the net-
work topology complicates the service design and the network
operation. ATP balances complexity and performance by en-
abling aggregation at the workers’ and PS’s ToR switches.

Thus, in the context of multi-job and multi-rack, an ideal
in-network aggregation service should support dynamic, best-

effort, multi-rack gradient aggregation for optimal efficiency
and speedup. As we show in Section 3, realizing such an
in-network aggregation service requires key innovations at
end-hosts and in how switch resources are apportioned and
dynamically (re)used. In addition, an in-network aggregation
service brings to fore two other aspects of the network stack
that need redesign, namely, reliability and congestion control.
Rethinking Reliability. In-network aggregation breaks end-
to-end semantics as some packets are consumed inside the
network during aggregation. Traditional end-host based reli-
ability mechanisms can misinterpret in-network packet con-
sumption as a packet loss, leading to unnecessary retransmis-
sions and lead to incorrect gradient aggregation due to the
inability of existing reliability mechanisms in dealing with
these new class of packet events. Thus, we need a new relia-
bility algorithm to deal with this new class of packet events.
Rethinking Congestion-Control. In the multi-tenant case,
the network resources (switch aggregators and network band-
width) available to a DT job fluctuates because (1) DT jobs
exhibit on-off communication phases (Figure 3), (2) the total
number of DT jobs varies, and (3) background traffic varies.
Utilizing fluctuating network resources efficiently and shar-
ing them fairly depends on congestion control. However, as
end-to-end semantics are broken we cannot use traditional
congestion control algorithms that rely on RTT or drops as
the congestion signal. We need a new congestion control al-
gorithm that identifies the right congestion signal so as to
modulate the throughput of gradient fragments from workers’
for each DT job to meet the requirements of efficient use and
fair division of network resources across DT jobs.

3 Design
ATP is a network service that performs dynamic, best-effort
aggregation across DT jobs. ATP’s design aligns with guide-
lines for building robust and deployable in-network computa-
tion [53]: (1) offload reusable primitives: ATP is a network
service for in-network aggregation and a common function to
different DT frameworks; (2) preserve fate sharing: ATP is
able to progress in the event of network device failure via fall-
back to aggregation at the end-host; (3) keep state out of the
network: ATP’s end-host reliability algorithms are able to re-
cover lost data and deal with partial aggregation; (4) minimal
interference: ATP chooses aggregation only at Top-of-Rack
(ToR) switches to sidestep issues owing to probabilistic rout-
ing in the network.



3.1 ATP Overview
ATP lies in the transport layer which specifically targets in-
network aggregation of gradient tensors in DT applications;
it is not a general-purpose transport. Compared to general-
purpose TCP: (a) ATP redesigns specific transport features,
such as reliability, congestion control, and flow control for its
target context. (b) ATP does not implement TCP’s in-order
byte-stream and multiplexing abstractions as they do not apply
to the target context.

ATP performs aggregation at the granularity of fragments
of a gradient that fit in a single packet, i.e., gradient fragment
packets. ATP chunks the gradient tensor at each worker into
a sequence of fixed-size fragments such that each fragment
fits in a packet and assigns each a sequence number. Gradient
aggregation for a DT job merges values at the same sequence
number from each worker’s tensor.

Upon booting, each ATP programmable switch allocates
a portion of switch register memory to be shared by ATP
jobs. This memory is organized as an array of fixed-size
segments, which we refer to as gradient fragment aggregators,
or just aggregators. Each aggregator is accessed by its index
in the array, and aggregates gradient packets with a specific
sequence number belonging to the same DT job.

ATP workers stream gradient fragment packets to the
PS(s)2. ATP aggregates gradient fragment packets inside
the network when in-network resources are available. If in-
network resources are unavailable, gradient fragment packets
are sent to the end-host PS for aggregation. ATP restricts in-
network aggregation to ToR programmable switches. This
means that gradients from each worker can at most be ag-
gregated at two levels – (1) the rack switch at the worker
and (2) the rack switch at the PS. This requires coordination
of decisions to ensure that each gradient fragment packet is
aggregated exactly once. We use a decentralized, dynamic,
best-effort approach to determine where aggregation occurs.

Gradient fragment packets contains direction fields. These
directions interact with the ATP switch logic at the pro-
grammable switches, to program soft-state in the aggregator
to elicit a coordinated decision. The aggregator soft-state can
be discarded at any time, leading to aggregation at the PS
instead of the switch. The directions in a gradient fragment
packet comprise fields that help switches decide whether to
aggregate the packet, in which gradient aggregator to aggre-
gate, and to identify completion or failure of aggregation at an
aggregator. Switch logic uses these directions to program soft-
state in the switch that identifies whether a gradient aggregator
already exists for an incoming gradient fragment, and keeps
track of intermediate aggregation results and completion of
aggregation.

Soft-state in switches and directions in packets ensure that

2Note that two gradients from different workers that will be aggregated
never meet at switches in ring all-reduce architecture [58]. To the best of our
knowledge, any in-network aggregation, as well as ATP, can not apply to
ring all-reduce architecture.

  

W1

W2

3 5 7 …...

3 6 9 …...

A
1

B
1

3 5 7 …...

3 6 9 …...

A
2

B
2

1 2 …...

7

9

job …...seq

aggregator

job …...seq

reserved aggregatorempty aggregator

1 2 …...

9

3 5
7

After aggregating
A1 , A2 , B1 , B2

PS

packet
job ...seq index

A
2
′

A′
3 5 7 …...

B
1

B
2 B

1 
 + B

2

B′
3 6 9 …...

Figure 4: ATP dynamic, best-effort aggregation example. The
directions fields are job ID, sequence and aggregator index
in packet. soft-state is the values in the aggregators.
ATP does not require job-specific switch program changes
(and avoids switch restarts) upon job arrival/departure.

Figure 4 exemplifies how ATP achieves dynamic, best-
effort aggregation. A job with ID 3 has two workers, w1 and
w2. The workers compute gradients which are subsequently
broken by ATP at end hosts into two packets each - (A1, B1),
and (A2, B2). ATP aggregates gradient packets A1 with A2,
and B1 with B2, either at the switch or at the PS, as explained
next. Packets A1 and A2 are routed and hashed to aggregator 7;
since the aggregator is empty, it is “reserved” by packet A1 by
changing the aggregator’s soft-state to its job ID and packet
sequence. When A2 arrives at the switch, it hashes to the same
aggregator and triggers aggregation; then, the resulting packet
containing the aggregation result, A0

2, is sent to the PS. In
contrast, packet B1 can not reserve aggregator 9, because it
is reserved by a packet with job ID 1 and sequence 2. Thus,
packet B1 is forwarded directly to the PS; the same occurs
with B2. Packets B1 and B2 are aggregated at the PS. For either
pair of packets, the PS sends the parameter packets (A0 and B0)
via multicast back to workers w1 and w2. When the switch
receives A0, aggregator 7 is deallocated and set as empty (i.e.,
A0 is hashed to aggregator 7, and the aggregator’s job ID and
sequence match with those in A0) to enable aggregator 7 to be
used by future fragments from another job.

To detect and deal with packet losses ATP uses time-
out based retransmission or out-of-sequence parameter ACK
packets from the PS. When a packet is retransmitted, it sets
the resend flag. This serves as a direction for the switch to
deallocate and transmit any partially allocated result to the PS.
Also, to deal with congestion, say if queue depth is above a
certain threshold when packet A2 is received, an ECN flag in
A2 is set and carried over to A0

2. This is copied to the parame-
ter packet A0 in PS and received by the workers who adjust
their windows. The window adjustment is synchronized in
both the workers as it is triggered by the same ECN bit in A0.

3.2 ATP Infrastructure Setup
ATP requires a one-time static setup involving programming
and restarting switches to bring the service up. Any dynamic
per-job setup is managed by inserting the appropriate job-
specific directions in gradient fragment packets.



IP Header Data

packet

bitmap0 (32bits)

bitmap1 (32bits)

fanInDegree0
5 bits

jobIDAndSequenceNumber (32 bits)

fanInDegree1
5 bits

over$ow
1 bit

ecn 
1 bit

edgeSwitchIden,-er

1 bit
isAck
1 bit

aggregatorIndex

16 bits

ATP Header

ATP Header

16 bytes

collision
1 bit

resend
1 bit

Figure 5: ATP packet format.
Static Infrastructure Setup. The infrastructure, comprising
the switches and the end-host networking stack, is config-
ured once to serve all ATP jobs. Each programmable switch
installs a classifier to identify ATP traffic—gradient and pa-
rameter packets—and allocates a portion of switch resources—
aggregators—to aggregate ATP traffic. The end host installs
an ATP networking stack, which intercepts all the push or
pull gradient calls from DT jobs. End-hosts have knowledge
of the network topology—switch, end-host port connectiv-
ity, and total number of aggregators at a switch—so they can
orchestrate aggregation across multiple switches.
Dynamic Per-Job Setup. Each new DT job is assigned a
unique job ID. The job assigns each worker an ID from 1 to
W , where W is the total number of workers. The job tracks
the location of workers in the network topology to build an
aggregation hierarchy. In case workers and PS are spread
across racks, the job can use multiple switches for in-network
aggregation. The ATP networking library computes the job’s
worker fan-in at each level of the aggregation hierarchy, which
is used to determine when aggregation is complete (§3.5).
ATP uses IGMP to build a multicast distribution tree for the
PS to return parameters to workers.

3.3 Data Structures
Packet Format. Figure 5 shows the gradient fragment
packet format. The ATP header fields comprise direc-
tions and contain metadata about the fragment. The
jobIDAndSequenceNumber field is the identifier of a packet
and is used to match gradient packets from different workers
on the same job. The Data field contains tensor values (or
aggregated tensor values).

One-hot encoding is used to identify the worker’s posi-
tion in the aggregation hierarchy (bitmap0), and the first-level
switch’s position at the second edge switch (bitmap1). The
fan-in degree indicates the number of workers attached to
the first edge switch (fanInDegree0) and workers or switches
attached to the second edge switch (fanInDegree1). These
four fields are used to determine when aggregation has com-
pleted (§3.5). The edgeSwitchIdentifier flag is set to 0 if
the packet is en-route to the first edge switch in the aggrega-
tion hierarchy and 1 if the packet is en-route to the second
edge switch.

Workers detect dropped packets when they receive out-
of-order parameter packets, which triggers them to resend
gradient packets for aggregation (§3.7). The resend flag is
set if it is a retransmitted gradient packet. The ECN flag is

  

1 0 0 1 0 1 2 0

index bitmap counter ecn
job
ID

sequence
number

aggregator
value ;eld

0 51 0 0 1 0 1 2 0 0 5

1 0 0 1 0 1 2 0 0 52 0 1 1 0 1 3 1 5 1000

1 0 0 1 0 1 2 0 0 51 0 0 1 0 1 2 0 0 5

1 0 53 1 0 0 0 1 2 1 5 900

���

���

���

��� aggregator

timestamp

���

���

(32 bits) (32 bits) (1 bit) (32 bits) (32 bits) (248 bytes)

Figure 6: ATP Switch memory layout.

marked by a switch when the switch’s output queue length
exceeds some threshold, which is used for detecting network
congestion. The collision flag is marked by a switch when
it forwards a gradient packet onward due to the aggregator
not being available because it is in use by a different job. This
flag helps PS choose another aggregator to avoid collision in
the next round.

Parameter packets use the same packet format, but indicate
the different contents by setting the isAck flag. They are
multicast from the switches to workers when an aggregation
is complete, and serve as acknowledgments (ACKs) for the
gradient packets sent by the workers.
Switch Memory. Figure 6 shows the switch memory layout.
Switch memory is organized as an array of fixed-size aggrega-
tors, each accessed by its index in the array. The value field
contains aggregated data from different workers. The size of
the value field is the same as that of a gradient fragment value.
The bitmap field records which workers have already been
aggregated to the aggregator’s value field. The counter field
records the number of distinct workers included in the aggre-
gated value. The ECN field records congestion status and is set
if any aggregated packet had the ECN flag set. The timestamp

field is updated when an aggregation is performed, and is
used to detect when an aggregator has been abandoned (e.g.,
when all workers fail) and can be deallocated (§3.7). The iden-
tifier fields <Job ID, Sequence Number> uniquely identify
the job and the fragment that this aggregator serves.

3.4 Inter-rack Aggregation
Scaling aggregation beyond a single rack provides more flexi-
bility w.r.t. where DT executes in a cluster. Aggregating just
at a worker’s local ToR switch is simple, but leads to unneces-
sary network traffic to the PS when workers reside in different
racks. Alternatively, aggregation can be done at higher lay-
ers of the network topology. However, this approach would
greatly increase protocol complexity because the system has
to handle route changes in the interior of the network. For
example, ECMP-based routing can change the number of
gradient streams incident at a particular switch in the inte-
rior of the network. This necessitates careful coordination
between network routing and the aggregator allocation mech-
anism. Thus, ATP only deploys in-network aggregation in
ToR switches, either at the worker’s rack (first-level) or at
the PS’s rack (second-level). This complies with a recent
study which shows that programmable switches today are



  

pkt.IsAck
 == pkt.app_seq_id

 

deallocate allocator

multicast

 

 

 
  

 

write the aggregator value and bitmap
to the packet and forward packet

①

②
③

⑧

④ ⑤⑦

no

no

no

no

no

yes

yes

yes

yes

yes

pkt: 
    packet
agg:
    aggregator 

temp:
  temporary
    variable

yes

no

⑥

received an ATP packet

|| agg is empty
pkt.edgeSwitchIdenti!er += 1

pkt.collision = 1
forward packet

pkt.resend = 1
agg.app_seq_id == pkt.app_seq_id

temp.bitmap = pkt.bitmap0
temp.fanIndegree = pkt.fanIndegree0

pkt.edgeSwitchIdenti!er += 1

temp.bitmap = pkt.bitmap1
temp.fanIndegree = pkt.fanIndegree1

pkt.edgeSwitchIdenti!er = 0

 pkt.edgeSwitchIdenti!er == 0

is already
aggregated

agg.ecn = pkt.ecn
drop packet

do aggregation
agg.bitmap |= temp.bitmap

agg.counter ++

agg.counter == temp.fanIndegree

agg.app_seq_id

Figure 7: Pseudocode of the switch logic in the ideal case.

usually deployed at ToR switches for near-server computation
offloading [27].

To coordinate where aggregation occurs, ATP uses two
groups of bitmap and fanInDegree fields in gradient pack-
ets, i.e., bitmap0/1 and fanInDegree0/1 as shown in Figure 5.
The edgeSwitchIdentifier field indicates which bitmap and
degree a switch should use when processing the gradient
packet, the first or second level of aggregation. When a
first-level aggregation switch forwards a packet, it sets the
edgeSwitchIdentifier bit in the packet header. The bitmap
size limits the total number of workers ATP can support. As
our testbed switch supports only 32-bit values, our implemen-
tation can support up to 1024 (=32⇥32) hosts; in general if
the programmable switch can support n-bit values, ATP can
support up to n2 workers.

It is worth noting that ATP’s multi-rack aggregation can be
extended to more levels as long as the aggregation point is
the fixed waypoint in the routing. As ATP’s switches in two
levels behave differently when handling packet retransmis-
sion (§3.7), switches whose level is higher than two should
follow the logic in the second level. More details can be found
in §A.2.

3.5 Switch Logic
Switch logic implements the algorithm that supports the dy-
namic, best-effort in-network aggregation service. It provides
aggregator allocation, deallocation, and gradient aggregation.
The allocation policy in ATP is First-Come-First-Serve with-
out preemption: if a gradient fragment packet can reserve an
aggregator, it keeps the aggregator until it is deallocated. In the
ideal case, each edge switch completes aggregation of all inci-
dent worker gradient packets and sends the aggregated result
downstream. We describe how failure cases (e.g., packet loss)
are handled in §3.7. A detailed flowchart outlining switch
logic can be found in Figure 7.
Aggregator Allocation. The arrival of a gradient frag-

ment packet triggers aggregator allocation. When a gradi-
ent fragment packet arrives, the switch checks the avail-
ability of the aggregator at the packet’s aggregatorIndex

field. End-hosts compute aggregatorIndex as HASH(<Job

ID, Sequence Number>)%numAggregators, which is consis-
tent across all workers in a job. However, hash collisions
could cause aggregatorIndex from different fragments and
different jobs to map to the same index: e.g., in Figure 4,
gradient fragment packets of Jobs 1 and 3 collide at index 9.

If the identifier field <Job ID, Sequence Number> in the
aggregator is empty, we store the packet’s identifier in the
aggregator, and copy the gradient packet’s data field into the
aggregators value field. The switch copies the bitmap field
in the aggregator from the appropriate bitmap field in the
packet (bitmap0 if edgeSwitchIdentifier is 0, else bitmap1),
and initializes the counter to 1.

If the aggregator’s identifier field is non-empty, the switch
compares it to packet’s identifiers (box 1 in Figure 7). If
they are different, there is a hash collision and ATP pushes the
gradient fragment packet downstream to be processed at the
PS. To avoid aggregation on this packet at the downstream
switch and propagate the collision information to the PS, ATP
sets resend and collision flags. To indicate this packet came
from a switch and not a worker, it flips the edge switch identi-
fier in the packet ( 2 in Figure 7) as well. If the aggregator
and packet identifiers are equal, gradient aggregation occurs.
Gradient Aggregation. If an aggregator is available for a gra-
dient fragment packet, ATP uses the edgeSwitchIdentifier

to fetch the fan-in degree and the bitmap for this switch from
the packet ( 3 in Figure 7). Then, ATP checks whether this
packet has been aggregated by testing the packet’s bitmap
against the aggregator’s bitmap ( 4 in Figure 7). If not, ATP
aggregates (adds) the packet’s gradient data to the value field
in the aggregators and also or’s the bitmap field in the gradient
packet to the bitmap field in the aggregator ( 5 in Figure 7).
ATP increments the aggregator’s counter field. If the packet
already been aggregated (e.g., it was resent), ATP OR’s the ECN

field from the packet into the aggregator’s ECN field and drops
the packet ( 7 in Figure 7).

If the counter in the aggregator is less than the correspond-
ing fan-in degree ( 6 in Figure 7), ATP drops the gradient
fragment packet and OR’s the ECN — this is the step that saves
bandwidth to the PS. If, however, they are equal then ag-
gregation at this switch is complete and ready to be pushed
downstream. The switch replaces the packet’s data field with
the aggregator’s value field, and the corresponding bitmap
field with the aggregator’s bitmap and sends the packet down-
stream towards the PS.

ATP chooses to forward the complete aggregation results
to the PS instead of sending them back to workers. This
design makes the aggregation results stored at the PS. When
a parameter packet to workers is dropped, the PS can resend
the aggregation result.
Aggregator Deallocation using Parameter Packets. The



switch multicasts parameter packets back to the workers when
it receives parameter packets from PS. A parameter packet
works as the acknowledgement (ACK) of the gradient frag-
ment packets, and must traverse the edge switches used for ag-
gregation. When an ATP switch processes a parameter packet,
the switch checks if the aggregator at the packet’s index has
a matching identifier, and if so deallocates the aggregator by
changing all fields to null ( 8 in Figure 7).

3.6 End Host Logic
Workers in ATP push gradient fragment packets toward the PS
and receive updated parameters back. The PS accepts gradient
fragment packets, as well as partially or fully aggregated pack-
ets, to compute the full aggregation and sends the updated
parameters back to workers. The PS also addresses collisions
over aggregator indexes by rehashing.
Worker Pushing Gradients. The ATP end-host network
stack obtains gradients by intercepting push or pull calls from
DT jobs. It chunks these gradients into a sequence of 306B
packets (58B header + 248B gradient values). ATP converts
floating-point numbers in gradients to 32-bit integers [56] to
work with switches that do not support floating-point oper-
ations. These gradient fragment packets are small and ATP
introduces optimizations for high packet I/O throughput (§4).
PS Updating Parameters. ATP allocates an area of memory
for each job at the PS for collecting aggregated gradients as
an array of <bitmap, value> indexed by sequence number.
The bitmap tracks which workers’ gradient fragments have
been aggregated in the value field. PS maintains a bitmap for
each value to track which worker values have been aggregated.
When a gradient fragment packet arrives, the PS compares
its bitmap with that of the packet for an overlap. If they do
not overlap, the PS aggregates the packet’s data into its stored
value, and updates the stored bitmap from the packet’s bitmap.
For example, if the incoming gradient packet is an individual
gradient packet, PS checks if a packet from that worker was
already aggregated (i.e., PS bitmap for the worker is set to
1) due to a resent packet, drops duplicates and otherwise
updates the value and bitmap. On completion of aggregation
of a parameter fragment, the PS sends the updated parameter
fragment to the switch, which multicasts back to all workers
in the job.

For a single gradient fragment, it is possible that the aggre-
gator is busy when the first few packets arrive (hash collision),
but available for later packets (released). In this case, the
first packets are forwarded directly to the PS, while the re-
maining ones are aggregated at the switch. However, without
intervention the switch will never send along the aggregated
values because it is waiting for packets that have already
been sent. Workers detect this stalled aggregation when they
receive parameter packets for higher-sequenced fragments,
and all workers will treat the stalled fragment as a loss. Each
worker retransmits the stalled fragment with the resend bit
set. This ensures completion of aggregation (by piggybacking

on packet loss recovery; §3.7).
To reduce the frequency of aggregator collisions, we pro-

pose a dynamic hashing scheme. PS checks the collision bit
of gradient packets. If the collision bit is set, the PS rehashes
to get a new aggregator index (as HASH(<aggregatorIndex>
)%numAggregators). It sends this new aggregatorIndex to
workers in the unused bitmap field of the parameter packet.
Workers remap the collision-prone index to the new index,
and send any subsequent gradient that would have been sent
with the old index with the new index instead. This simple
approach helps evolve the hash function in a dynamic manner
over time at each worker, making it collision-resistant.
Worker Receiving Parameters. The network stack main-
tains a sliding window over the sequence of gradient frag-
ment packets. After sending an initial window of packets, the
worker records the first un-ACKed sequence number as the
expected sequence number and waits for parameter packets
from the PS. The worker uses the parameter packets from PS
to slide the window and send new gradient packets. When a
worker receives a parameter packet, it checks if the packet
has the expected packet sequence number. If the parameter
packet was already received (e.g., because it is lost by some
other worker and retransmitted at that worker’s request), it is
ignored. If it has the expected number, the worker increases
the expected sequence number and invokes the congestion
control algorithm (§3.7) to update the current window. If the
number of in-flight packets is less than the congestion window,
ATP sends the remaining window (congestion window size -
in-flight packets) of gradients fragment packets. If the param-
eter has a sequence number higher than expected, ATP may
consider the expected gradient fragment as lost, triggering
loss recovery (§3.7).

3.7 Reliability and Congestion Control
Reliability. Due to loss of gradient fragment or parameter

packets, the PS may not send parameter packets in sequence.
As noted previously, when this occurs, a worker updates the
received parameters but does not update expected sequence
number. When a worker receives three consecutive parameter
packets other than the expected sequence number, it detects
loss of the gradient fragment with the expected sequence num-
ber. In this case, ATP worker retransmits the missing fragment
packet with the resend bit set; this indicates to switches that
there may be a partial aggregation state in the switch.

ATP takes a simple approach and does not try to do in-
network aggregation of resent gradients. This design consid-
ers the case that packet drop is due to one or more worker
failures, where worker recovery can take a significant amount
of time (§A.3). In this case, the remaining active workers
still keep retransmitting gradient packets, but the switch can-
not complete the aggregation. The aggregators are occupied
but do not perform effective aggregation, which wastes the
aggregator.

ATP takes different steps at the first and second levels of ag-



gregation. At the first level, when a resent packet arrives, the
switch checks for a matching aggregator. If it exists, and the
aggregator bitmap does not indicate that the resent packet’s
fragment has already been aggregated, then the switch aggre-
gates the value from the packet into the aggregator, merges the
bitmap from the packet into the aggregator’s bitmap, forwards
the results (which may be partial) downstream, and deallo-
cates the aggregator. When subsequent resent packets arrive,
the corresponding aggregator has already been deallocated,
so the switch simply forwards the resent packet downstream.

At the second level, the switch is unable to merge partial
results because it has one bit rather than a bitmap to indicate
the aggregation status for each of its first-level aggregation.
Instead, the second-level switch discards its aggregation state
and forwards any resent packet (including partial aggrega-
tions from the first level) to the PS, where the aggregation
ultimately completes. This ensures that upon packet loss, all
gradient fragments are (re)sent to the PS and the aggregator
for the fragment is deallocated.

The memory leaks can occur when a job stops abnormally
before PS sends parameter packets to deallocate aggrega-
tors. Without any mechanism, the aggregator would remain
occupied because the PS never ACKs with a corresponding
parameter packet. To handle this, on every parameter packet,
the switch checks the timeout value for the register specified
by the parameter packet’s index. Even if its job ID and se-
quence number do not match the parameter packet, the switch
will deallocate the aggregator if the timestamp is older than a
configured value.
Congestion Control. In a multi-tenant network, multiple
ATP jobs and other applications share the network. They
contend for various resources including network bandwidth,
receiver CPU, and switch buffers. In ATP, multiple jobs also
contend for aggregators at the switches.

High contention for aggregators in the switch can lead to a
situation where aggregators cannot aggregate all traffic. This
causes the traffic volume to increase, which will trigger queue
length buildup in switches and packet loss due to switch buffer
overflow. The observable symptoms in this case are similar
to network congestion. Based on this, ATP uses congestion
control to manage all contended resources.

In TCP, senders detect congestion using RTT, duplicated
ACKs, or ECN marks, and respond by adjusting sending win-
dows. For ATP, we pick ECN marks as the primary conges-
tion signal. RTT measured from a worker sending a gradient
packet to it receiving a parameter ACK packet will not work
because it includes synchronization delay between workers.
As all the workers receive the same parameter packet, using
ECN ensures that all workers see similar congestion signals.
We enable the ECN marking in switches, and use both ECN
and (rare) packet loss as the congestion signal. To ensure that
ECN marks are not lost during aggregation, ATP merges the
ECN bit in fragment packets into the ECN bit in aggregator ( 7
in Figure 7), which is later forwarded to the PS when aggre-

gation completes. This ECN bit is then copied to the parameter
packet and eventually reaches all the workers.

Each ATP worker applies Additive Increase Multiplicative
Decrease (AIMD) to adjust its window in response to con-
gestion signals. The window size ATP starts at 200 packets,
which at 300 bytes for each packet is within the bandwidth-
delay product (⇠ 60KB) of a 100Gbps network. ATP in-
creases window size by one MTU (1500 bytes or 5 packets)
for each received parameter packet until it reaches a threshold,
which is similar to slow start in TCP. Above the slow-start
threshold, ATP increases window size by one MTU per win-
dow. When a worker detects congestion via ECN marking on
a parameter ACK or three out-of-order ACKs, it halves the
window, and updates the slow start threshold to the updated
window.

3.8 Dealing with Floating Point
Gradient values are real numbers and DNN training frame-
works offer several numerical types to represent them, each
type offering varying trade-offs between range, precision and
computational overhead. Gradient values are typically repre-
sented using 32-bit floating point type.

The current generation of programmable switches does not
support 32-bit floating point arithmetic. Like prior work [56],
ATP converts gradient values at each worker from 32-bit float-
ing point representation to 32-bit integer representation by
multiplying the floating point number by a scaling factor (108)
and rounding to the nearest integer. The switch aggregates
these 32-bit integers and PS converts the aggregated value
back to 32-bit floating points by dividing by the scaling factor.
ATP chooses a large scaling factor, i.e., 108, so as to minimize
loss of precision as 32-bit floating point representation pro-
vides precision of 7 decimal digits [7]. A detailed justification
of ATP’s choice of scaling factor can be found in §B.1.

A large scaling factor can lead to the overflow of aggregated
gradients. There are two alternatives to deal with overflows:
proactive and reactive. The former (described in §B.2) is cau-
tious and wastes opportunities for in-network aggregation by
sending some gradient packets directly to the PS for aggre-
gation. We explain the pitfalls of this mechanism in §B.2.
Instead, ATP uses a reactive mechanism: all gradient pack-
ets are sent with the intention of aggregation at a network
switch. If a gradient packet triggers overflow at an aggregator
in the switch, we utilize a switch feature (saturation) to set the
aggregator value to the maximum value or minimum value
represented with 32-bit integers. If the aggregator value is sat-
urated, any further gradient packets destined at this aggregator
only update the directions (i.e., bitmap, fanIndegrees) and the
value remains saturated. When the aggregation is done, i.e.,
fanInDegree value is equal to the number of workers, the sat-
urated aggregator value is written to the gradient packet and
sent to the PS. If the PS finds the aggregator value is saturated,
it requests the original gradient values in floating-point for-
mat from all workers. This triggers a retransmission and all



the workers send packets with floating-point gradient values
directly to the PS, which finally performs aggregation.

In the worst case, such a reactive overflow correction in-
curs the cost of retransmission of all gradient packets in an
iteration. Note that the overhead incurred during overflow
correction is exactly the same as that during packet loss re-
covery. In our evaluations, we see no deterioration in training
throughput if the packet loss rate is < 0.1% (§5.2.3). This
translates to overflow correction as well: if the frequency of
overflow correction is < 0.1% (over packets), we will see no
deterioration in training throughput. We empirically show that
there is hardly any overflow for all popular models’ training
in §5.3. The frequency of overflow correction can be further
reduced using a dynamic scaling factor (§B.3).

Because overflow correction adds little overhead, ATP’s in-
network aggregation yields substantial speed-up in per-epoch
times. Coupled with quantization not affecting the number of
epochs, ATP overall yields significant gains in time-to-target-
accuracy, as we also show in §5.3.

4 Implementation
ATP’s implementation consists of (i) the protocol logic on P4
switches and end host, and (ii) hardware offloads to optimize
small-packet performance.
Programmable Switch. The switch implementation has pro-
cessing logic for gradient aggregation and control logic to
allocate, deallocate, and manage aggregators. The main chal-
lenge is that the whole packet must be parsed in a limited time
budget and processed in the limited switch pipeline stages.

Aggregation. Prior work [56] processed packets in a single
pass, which limited packets to 184B. ATP increases this limit
by taking two passes (called two-pass) at the switch for each
packet, which is a mixed usage of the resubmit 3 and recircu-
late features. The details are in §C. This raises the maximum
packet size to just 306B – larger, but still small packets. This
leaves 4 switch stages for control operations.

Control logic. This is responsible for checking whether an
aggregator is available, processing protocol flags, and updat-
ing the aggregation state. To work within the restriction of
one-time access to a register, ATP applies various techniques
to handle complex operations. Consider the bitmap check
process, which involves a read of the bitmap in the aggregator
and then an arithmetic operation on the gradient value and
bitmap value; finally, a write to the bitmap in the aggregator.
We instead note that a write to bitmap is equivalent to setting
a bit always. This allows us to reorder the write operation to
just before the read operation. This read-followed-by-write
serves as one-time register access which is permissible. An-
other method in ATP to address one-time access restriction
for one packet is to use two packets; e.g., ATP allocates the ag-
gregator with gradient packets but deallocates the associated
aggregators using parameter packets.

3We leverage ‘ force_shift ingress‘ feature to drop the data part that has
been aggregated before the resubmit.

End-Host Networking Stack. We implement ATP as a
BytePS [69] plugin, which integrates in PyTorch [15], Tensor-
Flow [14] and MXNet [19]. BytePS allows ATP’s use without
application modifications. ATP intercepts the Push and Pull
function calls at workers as they communicate with ATP PS.

Small Packet Optimizations. ATP’s network stack leverages
Mellanox’s RAW ETHERNET userspace network program-
ming model [1]. ATP uses TSO [50] and Multi-Packet QP
(MP-QP) [42] hardware acceleration features to improve
small-packet processing. TSO speeds packet sending by of-
floading packetization to the NIC and improves PCIe band-
width via large DMA transfers. To improve packet receiving
rate, MP-QP uses buffer descriptors that specify multiple con-
tiguous packet buffers and reduce the NIC memory footprint
by at least 512X . These features together reduce CPU cost via
fewer calls to send/receive packets and fewer DMA operations
to fetch packet send and receive descriptors.

ATP uses multiple threads to speed up packet processing.
When ATP receives tensors to transfer, it assigns the tensor to
a thread to send, which may cause load imbalance across dif-
ferent threads. Each worker in ATP has a centralized scheduler
to receive tensors from the application layer, and maintains
the total workload for each thread. Whenever the scheduler
receives tensors to be sent, it extracts the size and assigns the
tensor to the least loaded thread to balance the load.
Baseline Implementation. We implement a prototype of
SwitchML [56], which uses the switch as the PS and provides
a timeout-based packet-loss recovery mechanism. We apply
TSO and MP-QP features to the SwitchML implementation
at end hosts to improve small-packet operations, but do not
apply the two-pass optimization at the switch to align with the
public version of SwitchML. As a result, the packet size for
SwitchML implementation is 180 bytes. We also open-source
our SwitchML implementation [3].

5 Evaluation
We evaluate ATP via testbed experiments and software emu-
lation to answer the following questions:

1. How does ATP perform compared to state-of-the-art
approaches for a single job (§5.2.1)?

2. How does ATP’s inter-rack aggregation perform com-
pared to an alternate rack-scale service (§5.2.2)?

3. What are the overheads of ATP’s loss recovery mecha-
nisms (§5.2.3)?

4. How does conversion to integers in ATP affect time to
accuracy (§5.3)?

5. How does dynamic aggregator allocation compare to a
centralized static scheme under multi-tenancy (§5.4)?

6. How effective is ATP’s congestion control (§5.5)?

5.1 Experimental Setup
Cluster Setup. We evaluate ATP on a testbed with 9 ma-
chines. 8 of them have one NVIDIA GeForce RTX 2080Ti
GPU with NVIDIA driver version 430.34 and CUDA 10.0.



All machines have 56 cores of Intel(R) Xeon(R) Gold 5120T
CPU @ 2.20GHz, 192GB RAM with Ubuntu 18.04 and Linux
kernel 4.15.0-20. Each host has a Mellanox ConnectX-5 dual-
port 100G NIC with Mellanox driver OFED 4.7-1.0.0.1. All
the hosts are connected via a 32x100Gbps programmable
switch with a Barefoot Tofino chip. We evaluate inter-rack ag-
gregation using Tofino’s software switch model [5] to emulate
ATP switches in software with the same code.
Baselines. We compare ATP against BytePS [69]; both use
a worker-PS architecture. BytePS supports TCP (BytePS
+ TCP) and RDMA over Converged Ethernet (RoCE) [36]
(BytePS + RDMA) as network protocols. We turn on PFC [25]
for RDMA to provide a lossless network. While ATP uses
the default of N workers to 1 PS (labeled Nto1), we opti-
mize BytePS with as many PSs as the workers (labeled NtoN)
to alleviate the network bottleneck. Also, we co-locate one
each of the N PSs and N workers in the same machine. We
also compare ATP with our implementation of SwitchML,
a state-of-the-art baseline with in-network aggregation sup-
port. We also compare ATP against Horovod [58] with RoCE
(Horovod+RDMA) and with TCP (Horovod+TCP) which
uses a ring all-reduce architecture [61].
Workloads. We run Pytorch on top of the above schemes to
evaluate many popular real-world models: AlexNet, VGG11,
VGG16, VGG19, ResNet50, ResNet101, and ResNet152 [33,
44, 60]. Each model trains on the ImageNet dataset. The DT
job has 8 workers unless specified. For most experiments we
use VGG16 (model size 528MB) and ResNet50 (model size
98MB), as representatives for network-intensive and compute-
intensive workloads, respectively. We also run an aggrega-
tion microbenchmark where each worker repeatedly transfers
4MB tensors (maximum size BytePS supports), which are
aggregated in the network (ATP) or at the PS(s) (BytePS), and
are then sent back to the workers. In contrast to real jobs, this
microbenchmark has equal-sized tensors and always has data
to send with no “off” phase.
Metrics. We use three metrics to measure performance: (1)
training throughput for DT jobs, which is the number of im-
ages processed per second (image/sec) normalized by the
number of workers; (2) time to accuracy to show a DT job’s
quality, which is the training time to reach a target or maxi-
mum accuracy; and (3) aggregation throughput for the mi-
crobenchmark, which is the total bytes of parameters received
at each worker per second (Gbps).

5.2 Single Job Performance
5.2.1 ATP Training Performance
We compare ATP against all baselines on single-job training
throughput for all the models in our workload as shown in Fig-
ure 8. ATP achieves the best performance for all jobs with a
maximum speedup of 1.5X over BytePS NtoN RDMA, 1.24X
over Horovod RDMA, 2.5X over BytePS NtoN TCP, 8.7X
over BytePS Nto1 TCP, 4.2X over Horovod TCP and 1.5X
over SwitchML. Performance gains are larger on network-

intensive workloads (VGG) than compute-intensive work-
loads (ResNet). PS-based ATP is comparable to, and in many
cases outperforms, the state-of-the-art ring all-reduce ap-
proach (Horovod+RDMA). ATP outperforms SwitchML due
to support for larger packet size made possible via our opti-
mized two-pass implementation of switch logic.

5.2.2 Inter-rack Aggregation
ATP provides aggregation at two levels in inter-rack config-
urations. We pick a typical network topology as shown in
Figure 9, where the PS is connected to switch SW2 and work-
ers w0-w5 are connected to different switches. We compare
against a rack-scale solution (RSS) that aggregates locally at
each rack and forwards partial aggregates to the PS. In our
test topology, RSS performs aggregation for w0-w1 at SW0,
w2-w3 at SW1, w4-w5 at SW2, and then, aggregation from
SW0, SW1 and SW2 at the PS. This approach simplifies the
algorithm at the switch at the cost of more network traffic
to the PS. We measure the amount of traffic the PS receives
with ATP and RSS using the software simulator (so we cannot
measure real throughput). PS with RSS receives 3X more traf-
fic than PS with ATP. This is because RSS sends the partial
aggregates from SW0�SW2 to PS while ATP aggregates in-
dividual packets from w5 and w4 and partial aggregates from
SW0 and SW1 at switch SW2 before they are sent to PS; this
eliminates 2/3 of the traffic to the PS.

5.2.3 Packet Loss Recovery Overhead
ATP handles packet loss at the end host, but guarantees aggre-
gation correctness and prevents memory leaks in the switch.
To evaluate the overhead of packet loss recovery, we config-
ure one worker to adversarially drop packets with a packet
loss rate between 0.001% and 1% (as in prior work [56]). We
compare against SwitchML, which uses a timeout mechanism
to detect packet loss, and turn off ATP’s congestion control
to avoid window back-off due to this adversarial packet loss.
We use the timeout value (1ms) from SwitchML.

Figure 10 shows the training and microbenchmark through-
put normalized to no loss for varying loss rates. Overall, ATP
degrades gracefully when the loss rate increases, and to a
lesser degree than SwitchML. This is because ATP adopts out-
of-sequence ACKs as a packet loss signal, which enables ATP
to detect and respond to packet losses faster than SwitchML.

5.3 ATP Time-to-Accuracy (TTA)
5.3.1 Single Job TTA
ATP changes the nature of computation of gradient aggrega-
tion via conversion of gradient values to integers to enable
aggregation on the switch and has reactive mechanisms to
deal with overflows. To confirm this does not affect the train-
ing quality of our workload, we evaluate ATP’s accuracy over
time against the baseline (BytePS NtoN RDMA). We find that
ATP spends the same number of epochs to achieve the same
top-5 accuracy as BytePS NtoN RDMA for all the models.
Figure 11 plots the top-5 accuracy with time for ResNet50,



Alexnet VGG19 VGG16 VGG11
Resnet152

Resnet101
Resnet50

0

200

400

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(im
ag

e/
se

c)

ATP
Horovod TCP
BytePS NtoN TCP

BytePS Nto1 TCP
BytePS NtoN RDMA

SwitchML
Horovod RDMA

Figure 8: Single job throughput

  

Data center Net

SW 0 SW 1 SW 2

W 0 W 1 W 2 W 3 W 4 W 5 P S

Figure 9: Multi-rack topology

0% 0.001%    0.01%     0.1%1%
Loss Rate

0.0

0.5

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut ATP SwitchML

(a) VGG16

0% 0.001%    0.01%    0.1% 1%
Loss Rate

0.0

0.5

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut ATP SwitchML

(b) Microbenchmark

Figure 10: Throughput in different packet loss rate.

VGG16 and ResNet152. With VGG16, a network-intensive
workload, ATP outperforms BytePS and reaches 75% top-
5 accuracy 1.25X faster than BytePS. With ResNet50, ATP
and BytePS reach 93% top-5 accuracy in comparable amount
of time (ATP is 1.02X faster) as shown in Figure 11a. ATP
does not speed up training for ResNet50 as it is a compute-
intensive workload. ResNet152 (Figure 11c) exhibits the same
trend as ResNet50. We also conduct TTA experiments on
VGG19, ResNet101 and AlexNet models, and observe that
ATP reaches target accuracy 1.2X , 1.01X and 2.39X faster,
respectively. Figures for these results are in §D.3.
Overflow Correction. Retransmissions due to ATP’s over-
flow correction mechanism can be a source of overheads. In
our results, we see overflows only with ResNet152, with 445
aggregated gradient packets (i.e., 0.00002% of all aggregated
gradient packets generated in an epoch) requiring overflow
correction. These happen only in the first few iterations of the
first epoch when the model is initialized with random weights
and the magnitude of gradient updates is large.
Worst-case Precision Loss. ATP uses a scaling factor of 108.
Gradient values with a magnitude less than 10�8 are approxi-
mated as zero and experience complete loss of precision. We
observe that an average of only 0.00002% of the gradients
values per epoch in ResNet50 are less than 10�8. As a result,
ATP causes no loss of accuracy in the final trained model.

5.3.2 Multi-job Time-to-Accuracy (TTA)
We also evaluate TTA with 2 VGG16 jobs for ATP, BytePS
NtoN RDMA, and Horovod with RDMA. Each job has three
workers. We use one switch to emulate a dumbbell topology
and separate one worker from the other two of a job at the two
ends of the dumbbell. The link line rate is 100Gbps. A worker-
to-worker (or PS) path from each job share the dumbbell link.
Figure 12 shows the 75% top-5 accuracy with time for each
VGG16 job. Similar as single job TTA performance, ATP
outperforms BytePS and Horovod and reaches 75% top-5

accuracy 1.20X faster than the fastest BytePS job, and 1.25X
faster than Horovod. Two jobs in ATP and Horovod achieve
the same accuracy with the same training time, while this
is not the case for BytePS. We observed PFC storms from
NICs in BytePS, which we suspect is due to the heavy PCIe
contention between NIC and GPU.

In summary, these results demonstrate that ATP does not
compromise training quality and is able to achieve baseline
training accuracy in less time than other methods owing to
the acceleration provided by in-network aggregation.

5.4 Multiple Jobs
ATP does dynamic best-effort sharing of switch resources
across multiple jobs. Our multi-tenant extension of SwitchML
statically partitions switch resources equally across jobs.

5.4.1 Dynamic vs. Static Sharing
We compare ATP’s dynamic best-effort approach against
SwitchML’s static approach by launching 3 identical VGG16
jobs (with identical placement for workers and PS) connected
to one programmable switch. We vary the number of aggrega-
tors for the 3 jobs on the switch. The static approach allocates
a fixed 1/3 fraction of the aggregators to each job, while
ATP’s dynamic approach shares these aggregators dynami-
cally, so that when any job is in an off phase its aggregators
are available to other jobs.

We first tune the number of aggregators reserved for the 3
jobs to find the minimum number needed to get maximal train-
ing throughput for each job with the static approach. We find
that 1980 aggregators, referred to as peak throughput aggre-
gators (PTA), equally divided across the three jobs maximize
throughput because jobs saturate the link from the switch
to the PS. To measure the impact of sharing strategy under
contention, we reduce the number of available aggregators
from 100% of PTA to 33% of PTA, and measure training
throughput with both static and dynamic approaches.

Figure 13a shows the average training throughput (mea-
sured after warm-up, from the second epoch of training on-
wards) as we vary the number of aggregators available to
the 3 jobs from 100% of PTA (1980 aggregators) to 33% of
PTA (660 aggregators). With 100%, the dynamic approach
performs similarly to static approach. This is because in both
cases all aggregation happens in-network, and the switch to
PS link is fully utilized. As we reduce the number of aggrega-
tors available, throughput for the dynamic approach degrades



0 10000 20000 30000 40000 50000 60000
Time(s)

50%

70%

93%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
93% Accuracy

(a) ResNet50

20000 40000 60000 80000
Time(s)

50%

60%

75%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
75% Accuracy

(b) VGG16

0 10000 20000 30000 40000 50000
Time(s)

50%

70%

90%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
90% Accuracy

(c) ResNet152

Figure 11: Time to accuracy

50000 100000 150000 200000
Time(s)

50%

60%

75%

To
p 

5 
Ac

cu
ra

cy

ATP Job1
ATP Job2
Horovod Job1
Horovod Job2

BytePS Job1
BytePS Job2
75% Accuracy

Figure 12: TTA with two
VGG16 jobs

100% 85% 75% 60% 45% 33%
Peak Throughput Aggregators (PTA)

0

50

100

150

200

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(im
ag

e/
se

c)

Dynamic Static

(a) Training performance as the number of
PTA changes.

0 50 100
Time(10ms)

0

20

40

PS
 A

gg
re

ga
tio

n
(o

ps
/1

0m
s)

Job1 Job2 Job3

(b) PS aggregations with 100% of PTA

0 100 200 300 400 500
Time(10ms)

0

5000

10000

15000

In
-n

et
w

or
k 

Ag
gr

eg
at

io
n

(o
ps

/1
0m

s)

Job1 Job2 Job3

(c) Network aggregations with 33% of PTA

Figure 13: Dynamic v.s. static allocation with different peak throughput aggregators (PTA) ratio.

less than that with the static approach. This is because the dy-
namic approach allows sharing of unused aggregators across
jobs and also uses available switch-to-PS link capacity for
PS-based aggregation. We show this by delving into ATP’s
dynamic approach when using 100% and 33% of PTA.

Figure 13b shows the total number of aggregations at the PS
every 10ms for each job with ATP’s dynamic approach using
100% of PTA, starting at job warm-up. Initially, there are
hash collisions because of jobs allocating the same aggregator
index, which leads to aggregation at the PS. After 500ms,
ATP’s hash-collision avoidance kicks in and the dynamic
approach converges to complete in-network aggregation.

Figure 13c shows how ATP’s dynamic approach responds
when jobs enter an off phase. The figure shows the number
of aggregations performed at the switch every 10ms when
only 33% of PTA are available. The trace shows that when
one job enters an off phase (zero in-network aggregations),
the number of in-network aggregations for the remaining jobs
increases. For example, at sample 120, job 3 (red) enters an
off phase, and the in-network aggregations for jobs 1 and 2
increase until job 3 resumes at sample 180.

5.4.2 Effectiveness of ATP’s Hashing Scheme
In §5.4.1, we show ATP’s hashing scheme works with 100%
of PTA for 3 jobs. To evaluate at larger scale, we launch 8
microbenchmark jobs with 100% of PTA with ATP’s hashing
enabled (Hash-based dynamic) and without hashing enabled
(Linear-based dynamic which allocates aggregator indexes
in sequence, i.e., index = seq_num % N), and compare against
the baseline scheme (static allocation with 100% of PTA).

Figure 14 plots the aggregation throughput for the three
schemes as the number of jobs increases. ATP’s hash-based
scheme matches the baseline static scheme and greatly outper-
forms the linear-based scheme, as without hashing, a continu-
ous sequence of gradients from multiple jobs collide, intro-
ducing a significant amount of retransmission. Overall, these
experiments indicate that the dynamic hash function can ef-
fectively distribute aggregators to each job. It can achieve

2 3 4 5 6 7 8
# of Job(s)

0

5

10

15

Ag
gr

eg
at

io
n

Th
ro

ug
hp

ut
 (G

bp
s)

Linear-based dynamic
Hash-based dynamic

Static

Figure 14: Large scales

0 50 100 150
Time(s)

0

5

10

G
oo

dp
ut

 (G
bp

s)

ATPwith CC ATPwithout CC

Figure 15: ATP job with and
without congestion control

0 50 100
Time(s)

0

25

50

75

100

G
oo

dp
ut

 (G
bp

s)

1. ATP 2. non-ATP 3. ATP + non-ATP 

(a) ATP: VGG16

0 50 100
Time(s)

0

25

50

75

100

G
oo

dp
ut

 (G
bp

s)

1. ATP 2. non-ATP 3. ATP + non-ATP 

(b) ATP microbenchmark
Figure 16: Aggregation goodput with non-ATP traffic.

comparable performance to the static approach when there
is no contention for switch aggregators, and outperform the
static approach under contention.

5.5 Effectiveness of Congestion Control
ATP’s congestion control mechanism aims to minimize packet
loss while maximizing the link utilization. Network con-
gestion happens (1) when ATP traffic is co-located with
bandwidth-hungry normal traffic, such as TCP or RDMA
transfers; (2) when ATP does not perform in-network ag-
gregation due to a shortage of switch resources from other
contending ATP jobs, causing an incast to the PS. We evaluate
ATP’s congestion control mechanism in both cases.
With non-ATP traffic. It is common to co-locate multiple
systems and applications in a multi-tenant multi-rack cluster,
such as storage and data pre-processing systems. We validate
ATP’s congestion control effectiveness when co-locating with
such traffic. We launch a training job with 6 workers and 1 PS
for ATP. We add background flows competing for bandwidth
on a link to a worker, which individually can achieve line rate.
The experiment starts with background traffic, and then starts
a training job at t = 25s. We stop the training job after 50s.



We perform this experiment both with VGG16 and with our
microbenchmark to emulate large models on ATP.

Figure 16a reports the aggregation goodput (total size of
parameters aggregated in a second) from the worker that ex-
periences network congestion for VGG16 (ATP), the goodput
from the non-ATP traffic (non-ATP), and the aggregate good-
put (ATP + non-ATP) over time. The dashed black line shows
the peak goodput VGG16 job can achieve without background
traffic; this link bandwidth demand is less than fair share. We
see that the VGG16 job with ATP is able to achieve peak
goodput (as demand is less than fair share) and that the sum
of goodputs is close to line rate on the uplink from this worker.
This indicates that ATP’s CC is able to co-exist with non-ATP
background traffic with max-min fair allocation in this setting.

Figure 16b plots the same scenario instead with the mi-
crobenchmark job. The dashed black line shows the peak
goodput this job can achieve without background traffic,
which is indicative of a link bandwidth demand greater than
fair share of the network uplink rate at the worker. We see that
ATP is able to achieve near the fair share of the bottleneck
link (the uplink from this worker) and that the sum of goodput
from both traffic types is close to link rate. This showcases
near equitable sharing of link bandwidth. Figure 16a and Fig-
ure 16b show that the congestion control of ATP is able to
respond quickly to changes in congestion, and converge to a
new bandwidth which is very stable.
With other ATP traffic. We launch a single VGG16 job (8
workers) using ATP for 10 iterations. We reserve only 50%
of the switch aggregators needed to achieve peak training
throughput with complete in-network aggregation (to emulate
contention from background ATP jobs). Figure 15 shows
the aggregation goodput averaged per second from a sin-
gle worker against time with and without congestion control
(CC). We see that the congestion control of ATP kicks in, and
the aggregation goodput stabilizes around 7.5Gbps for the
worker. Note that this goodput is lower than the peak goodput
(⇠20Gbps) from the previous experiment because here we
have an 8-to-1 (8 workers to 1 PS) incast, only 50% of traffic
is reduced in the network, and the PS in our implementation
saturates at 60Gbps (§D.1).

Without CC, the goodput fluctuates dramatically between
4Gbps and 0; this is because incast causes frequent packet
loss without congestion control, and introduces high packet
loss recovery overhead. The training goodput of ATP with
congestion control is 66.8 img/s while that without congestion
control is 23.2 img/s, a decrease of 65%. These results show
that the congestion control for ATP can effectively maintain
high goodput and is effective in avoiding packet loss.

In summary, ATP’s congestion control helps it co-exist with
other tenants (both ATP and non-ATP).

6 Other Related Work
We discuss prior works that propose advances in hardware,
software, offloads, and algorithms to accelerate DNN training.

Speedup Network Transmission. Prior efforts propose to
improve gradient aggregation time by (1) smarter network
scheduling – increasing the overlap between GPU/CPU com-
putation and network transmission via fine-grained tensors
transmission scheduling (per layer instead of the whole gra-
dient or parameter) [32, 37, 52, 70]; combining model- and
data-parallelism via pipelining [31, 35]; using asynchronous
IO [20, 24]. (2) reducing network traffic – using large batch
size to reduce the communication frequency [11, 29, 38]; us-
ing quantization [57] or reducing redundancy in SGD [45]
to reduce bytes sent over the network; optimizing mixture
of local-global aggregation to adapt to network change at
runtime [21, 64]. ATP can incorporate these optimizations to
further improve its performance.
In-network Aggregation. The idea of in-network aggrega-
tion has been explored in wireless networks [18, 59]; in
big-data systems and distributed training systems using end-
hosts [23], a specialized host [48], high performance middle-
boxes [49] or overlay networks [17,63]. DAIET [55] proposed
a simple proof-of-concept design of in-network aggregation
without a testbed prototype. ShArP [30], supported by special
Mellanox Infiniband switches, builds an overlay reduction tree
to aggregate data going through it, but it does not apply the
aggregation until the switch receives all the data. ATP is the
first to provide a dynamic, best-effort in-network aggregation
service for multi-tenant multi-switch clusters.

7 Conclusion
We build an in-network aggregation service, ATP, to accel-
erate DT jobs in multi-tenant multi-rack networks. ATP pro-
vides a best effort in-network aggregation primitive via care-
ful co-design of switch logic (for aggregation) and the end-
host networking stack (for reliability and congestion control).
Testbed experiments show that ATP is able to outperform
existing systems by up to 8.7X for a single job, and it is even
slightly better than the current state-of-the-art ring all-reduce
with RDMA. In a multi-tenant scenario, best-effort in-network
aggregation with ATP enables efficient switch resource usage,
and outperforms current state-of-the-art static allocation tech-
niques by up to 38% in terms of training time when there is
heavy contention for on-switch resources.

Acknowledgments
We would like to thank the anonymous reviewers and
our shepherd Kai Chen for their thoughtful feedback. Yan-
fang Le, Kshiteej Mahajan, Aditya Akella and Michael
Swift are supported in part by NSF grants CNS-1565277,
CNS1719336, CNS-1763810, CNS-1838733, gifts from
Google and VMware and by NeTS-1717039. ChonLam Lao,
Yixi Chen and Wenfei Wu are supported by National Nat-
ural Science Foundation of China Grant No.61802225 and
the Zhongguancun Haihua Institute for Frontier Information
Technology.



References
[1] RAW Ethernet Programming. https://docs.

mellanox.com/display/MLNXOFEDv461000/

Programming.

[2] ATP Source Code. https://github.com/in-ATP/

ATP.

[3] ATP-SwitchML Source Code. https://github.com/
in-ATP/switchML.

[4] Barefoot Tofino. https://www.barefootnetworks.

com/technology/#tofino.

[5] Barefoot Tofino Software Behavior Model.
https://www.barefootnetworks.com/products/

brief-p4-studio/.

[6] Google TPU. https://cloud.google.com/tpu/.

[7] IEEE 754-1985. https://en.wikipedia.org/wiki/
IEEE_754-1985.

[8] Intel FlexPipe. https://www.intel.

com/content/dam/www/public/us/

en/documents/product-briefs/

ethernet-switch-fm6000-series-brief.pdf.

[9] LiquidIO Server Adapters. http://www.cavium.com/
LiquidIO_Server_Adapters.html.

[10] Netronome NFP-6000 Intelligent Ethernet Controller
Family. https://www.netronome.com/media/

redactor_files/PB_NFP-6000.pdf.

[11] Now anyone can train imagenet in 18 min-
utes. https://www.fast.ai/2018/08/10/

fastai-diu-imagenet/.

[12] Nvidia clocks world’s fastest bert training time and
largest transformer based model, paving path for ad-
vanced conversational ai. https://devblogs.nvidia.
com/training-bert-with-gpus/.

[13] XPliant Ethernet Switch Product Fam-
ily. http://www.cavium.com/

XPliant-Ethernet-Switch-Product-Family.

html.

[14] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI

16), pages 265–283, Savannah, GA, November 2016.
USENIX Association.

[15] Paszke Adam, Gross Sam, Chintala Soumith, Chanan
Gregory, Yang Edward, DeVito Zachary, Lin Zeming,
Desmaison Alban, Antiga Luca, and Lerer Adam. Au-
tomatic differentiation in pytorch. In In NIPS 2017
Autodiff Workshop: The Future of Gradient-based Ma-
chine Learning Software and Techniques.

[16] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Vinh The Lam, Francis Matus, Rong Pan, Navin-
dra Yadav, and George Varghese. Conga: Distributed
congestion-aware load balancing for datacenters. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 503–514, New York, NY, USA,
2014. Association for Computing Machinery.

[17] D. C. Arnold and B. P. Miller. Scalable failure recov-
ery for high-performance data aggregation. In 2010
IEEE International Symposium on Parallel Distributed
Processing (IPDPS), pages 1–11, 2010.

[18] Raghav Bhaskar, Ragesh Jaiswal, and Sidharth Telang.
Congestion lower bounds for secure in-network aggre-
gation. In Proceedings of the Fifth ACM Conference on
Security and Privacy in Wireless and Mobile Networks,
WISEC ’12, page 197–204, New York, NY, USA, 2012.
Association for Computing Machinery.

[19] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[20] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. Project adam: Building an effi-
cient and scalable deep learning training system. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 571–582, Broomfield,
CO, October 2014. USENIX Association.

[21] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter.
Blueconnect: Decomposing all-reduce for deep learning
on heterogeneous network hierarchy. IBM Journal of
Research and Development, 63(6):1:1–1:11, 2019.

[22] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McK-
eown. Appswitch: Application-layer load balancing
within a software switch. In Proceedings of the First
Asia-Pacific Workshop on Networking, APNet’17, page
64–70, New York, NY, USA, 2017. Association for Com-
puting Machinery.



[23] Paolo Costa, Austin Donnelly, Antony Rowstron, and
Greg O’Shea. Camdoop: Exploiting in-network ag-
gregation for big data applications. In 9th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 12), pages 29–42, San Jose, CA, April
2012. USENIX Association.

[24] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai
Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, and Andrew Y. Ng. Large scale distributed
deep networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, page 1223–1231, Red Hook, NY,
USA, 2012. Curran Associates Inc.

[25] Claudio DeSanti. IEEE 802.1: 802.1Qbb - Priority-
based Flow Control. http://www.ieee802.org/1/

pages/802.1bb.html, 2009.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[27] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform language
and compiler for data plane programming on heteroge-
neous asics. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’20, page 435–450, New York, NY, USA, 2020.
Association for Computing Machinery.

[28] Nadeen Gebara, Tenzin Ukyab, Paolo Costa, and Manya
Ghobadi. Panama: Network architecture for machine
learning workloads in the cloud. https://people.

csail.mit.edu/ghobadi/papers/panama.pdf.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[30] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock,
G. Shainer, G. Bloch, D. Goldenerg, M. Dubman,
S. Kotchubievsky, V. Koushnir, L. Levi, A. Margolin,
T. Ronen, A. Shpiner, O. Wertheim, and E. Zahavi. Scal-
able hierarchical aggregation protocol (sharp): A hard-
ware architecture for efficient data reduction. In 2016
First International Workshop on Communication Opti-
mizations in HPC (COMHPC), pages 1–10, 2016.

[31] Aaron Harlap, Deepak Narayanan, Amar Phanishayee,
Vivek Seshadri, Nikhil Devanur, Greg Ganger, and Phil
Gibbons. Pipedream: Fast and efficient pipeline parallel
dnn training. arXiv preprint arXiv:1806.03377, 2018.

[32] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. Tictac: Accelerating distributed deep
learning with communication scheduling. arXiv preprint
arXiv:1803.03288, 2018.

[33] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[34] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter,
John Carter, and Aditya Akella. Presto: Edge-based
load balancing for fast datacenter networks. In Proceed-
ings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, page
465–478, New York, NY, USA, 2015. Association for
Computing Machinery.

[35] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient
training of giant neural networks using pipeline paral-
lelism. In Advances in Neural Information Processing
Systems, pages 103–112, 2019.

[36] InfiniBand Trade Association. Supplement to Infini-
Band Architecture Specification Volume 1 Release 1.2.1
Annex A17: RoCEv2. https://cw.infinibandta.

org/document/dl/7781, 2014.

[37] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based pa-
rameter propagation for distributed dnn training. arXiv
preprint arXiv:1905.03960, 2019.

[38] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,
Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,
Yuanzhou Yang, Liwei Yu, et al. Highly scalable
deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint
arXiv:1807.11205, 2018.

[39] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
gpu/cpu clusters. In 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 20).
USENIX Association, 2020.

[40] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In



15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35–49, Renton,
WA, April 2018. USENIX Association.

[41] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
121–136, New York, NY, USA, 2017. Association for
Computing Machinery.

[42] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 1–16, Boston, MA, Febru-
ary 2019. USENIX Association.

[43] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with flexnic. In Proceed-
ings of the 21th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’16, page 67–81, New York, NY,
USA, 2016. Association for Computing Machinery.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90, May 2017.

[45] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
arXiv preprint arXiv:1712.01887, 2017.

[46] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind
Krishnamurthy, and Kishore Atreya. Incbricks: Toward
in-network computation with an in-network cache. In
Proceedings of the 22th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, page 795–809, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[47] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 143–157, Boston, MA, February 2019.
USENIX Association.

[48] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. Parameter hub: A rack-scale
parameter server for distributed deep neural network
training. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’18, page 41–54, New York,
NY, USA, 2018. Association for Computing Machinery.

[49] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa,
Matteo Migliavacca, Peter Pietzuch, and Alexander L.
Wolf. Netagg: Using middleboxes for application-
specific on-path aggregation in data centres. In Pro-
ceedings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technolo-
gies, CoNEXT ’14, page 249–262, New York, NY, USA,
2014. Association for Computing Machinery.

[50] Mellanox Technologies. Mellanox OFED for Linux
User Manual. Rev 3.40. http://www.mellanox.com/
related-docs/prod_software/Mellanox_OFED_

Linux_User_Manual_v3.40.pdf.

[51] Heng Pan, Zhenyu Li, JianBo Dong, Zheng Cao, Tao
Lan, Di Zhang, Gareth Tyson, and Gaogang Xie. Dissect-
ing the communication latency in distributed deep sparse
learning. In Proceedings of the ACM Internet Measure-
ment Conference, IMC ’20. Association for Computing
Machinery, 2020.

[52] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 16–29, New York, NY, USA, 2019. Association
for Computing Machinery.

[53] Dan R. K. Ports and Jacob Nelson. When should the
network be the computer? In Proceedings of the Work-
shop on Hot Topics in Operating Systems, HotOS ’19,
page 209–215, New York, NY, USA, 2019. Association
for Computing Machinery.

[54] Davide Sanvito, Giuseppe Siracusano, and Roberto Bi-
fulco. Can the network be the ai accelerator? In Pro-
ceedings of the 2018 Morning Workshop on In-Network
Computing, NetCompute ’18, page 20–25, New York,
NY, USA, 2018. Association for Computing Machinery.

[55] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network compu-
tation is a dumb idea whose time has come. In Pro-
ceedings of the 16th ACM Workshop on Hot Topics in
Networks, HotNets-XVI, page 150–156, New York, NY,
USA, 2017. Association for Computing Machinery.

[56] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan RK Ports, and Peter
Richtárik. Scaling distributed machine learning with in-
network aggregation. arXiv preprint arXiv:1903.06701,
2019.

[57] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong
Yu. 1-bit stochastic gradient descent and application to



data-parallel distributed training of speech DNNs. In
Interspeech 2014, September 2014.

[58] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[59] Mohamed A. Sharaf, Jonathan Beaver, Alexandros
Labrinidis, and Panos K. Chrysanthis. Tina: A scheme
for temporal coherency-aware in-network aggregation.
In Proceedings of the 3rd ACM International Workshop
on Data Engineering for Wireless and Mobile Access,
MobiDe ’03, page 69–76, New York, NY, USA, 2003.
Association for Computing Machinery.

[60] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[61] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations
in mpich. International Journal of High Performance
Computing Applications, 19(1):49–66, February 2005.

[62] Indu Thangakrishnan, Derya Cavdar, Can Karakus,
Piyush Ghai, Yauheni Selivonchyk, and Cory Pruce. Her-
ring: Rethinking the parameter server at scale for the
cloud. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’20. IEEE Press, 2020.

[63] Raajay Viswanathan and Aditya Akella. Network-
accelerated distributed machine learning using mlfabric.
arXiv preprint arXiv:1907.00434, 2019.

[64] Jianyu Wang and Gauri Joshi. Adaptive communication
strategies to achieve the best error-runtime trade-off
in local-update sgd. arXiv preprint arXiv:1810.08313,
2018.

[65] Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish,
Beng Chin Ooi, and Kian-Lee Tan. Database meets deep
learning: Challenges and opportunities. SIGMOD Rec.,
45(2):17–22, September 2016.

[66] Zheng Wang and Michael O’Boyle. Machine learning
in compiler optimization. Proceedings of the IEEE,
106(11):1879–1901, 2018.

[67] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[68] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo
Shin, and Dongsu Han. Neural adaptive content-aware

internet video delivery. In 13th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 18), pages 645–661, Carlsbad, CA, October 2018.
USENIX Association.

[69] Jiang Yimin. BytePS. https://github.com/

bytedance/byteps.

[70] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P. Xing. Poseidon: An efficient communi-
cation architecture for distributed deep learning on GPU
clusters. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 181–193, Santa Clara, CA,
July 2017. USENIX Association.

[71] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan
R. K. Ports, Ion Stoica, and Xin Jin. Harmonia: Near-
linear scalability for replicated storage with in-network
conflict detection. Proc. VLDB Endow., 13(3):376–389,
November 2019.

A Additional Design Details
This section is a supplement to ATP’s design description
from §3. We first provide additional design details for clearer
exposition and then outline design extensions to make ATP
more general and robust.

A.1 Switch Algorithm for Reliability
Figure 17 explains the details on how the switch handles the
three issues discussed in Section 3.7. If the retransmitted gra-
dient fragment packets have an aggregator at switch ( 1 in
Figure 17), ATP uses the bitmap in the gradient fragment
packet header to check if bitmap field in the aggregator is
set ( 5 ). If unset, the data field element is aggregated to the
value field of the aggregator and the bitmap field in the ag-
gregator is set ( 6 ). After aggregation or if the retransmitted
gradient has already been seen, ATP copies the value field
and the bitmap field from the aggregator to the data field and
the bitmap field of the packet, deallocates the aggregator, and
sends the packet downstream ( 7 ). Given that only the first
retransmitted gradient packet triggers aggregator deallocation,
the retransmitted packets with the same sequence number
from other workers do not hit the aggregators or reserve a
new aggregator and thus, they will be directly forwarded to
upstream devices. Note that at the second level of aggregation,
ATP directly forwards a retransmitted gradient packet for sim-
plicity ( 3 ). In all the cases, ATP deallocates the aggregator
and sets all fields to null ( 3 and 7 ).

The parameter packet, whether it is retransmitted or not,
always triggers the deallocation of the aggregator with the
same <Job ID, Sequence Number>.



  

pkt.resend == 1 &&
�

agg.app_seq_id == pkt.app_seq_id &&
�

pkt.isAck == 0 

pkt.edgeSwitchIdenti:er == 0

temp.bitmap = pkt.bitmap0
�

temp.fanIndegree = pkt.fanIndegree0
�

pkt.edgeSwitchIdenti:er ++��
�

deallocate aggregator
��

forward packet��
�

is already aggregated�

do aggregation
��

agg.bitmap |= temp.bitmap��
�

write the aggregator value and 
bitmap to the packet��

deallocate aggregator�
forward packet��

①

②

③

④

⑤

⑥

⑦

yes

yes

yes

no

no

pkt: 
  packet

agg:
  aggregator 

temp:
  temporary
  variable

Figure 17: Pseudocode of the switch logic dealing with packet
loss.

A.2 Aggregation at Multiple Hierarchy Lev-
els

ATP can be extended to support aggregation at multiple hier-
archy levels, i.e., beyond ToR switches to also enable aggrega-
tion at aggregation layer switches and core layer switches. The
only pre-requisite is that packet routes for all gradient packets
have to be deterministic (e.g., as in ECMP) and known ahead
of time so that ATP knows the exact switch in the network at
which gradient packets (or partially aggregated gradient pack-
ets) for a particular sequence number converge. This helps
to precisely determine the fan-in degree at each intermedi-
ate switch from workers to the PS. This helps higher-level
switches to aggregate partially aggregated results from lower-
level switches and determine when aggregation at higher-
level switches is complete. To enable multi-level aggregation,
we need to add more bitmap and fanInDegree fields to ATP
packet header (one for each additional in-network gradient
aggregating switch) to track the progress of aggregation at all
the switches involved in gradient aggregation enroute from

the workers to the PS.
Notably, for non-deterministic route load balancing

schemes, such as Presto [34] and CONGA [16], ATP pack-
ets only deterministically route through TOR switches with
non-deterministic routing at higher levels of the datacenter
network hierarchy. Thus, to support such cases, ATP does
aggregation only at the TOR-layer.

A.3 Recovering from Worker Failures
PS-based architectures deal with worker failures by re-
spawning a worker process, perhaps on a different machine
connected to a different ToR switch. This requires invalidat-
ing stale aggregators having incomplete aggregation results
that are waiting on gradient packets from the failed worker.
Such stale entries are invalidated as ATP has checks and bal-
ances to overcome switch memory leaks (described in §3.7).
Also, the re-spawned worker might be on a different machine
and connected to a different TOR switch. This might require
changes to the fanInDegree field in ATP packet headers. ATP
re-triggers dynamic job-setup phase (described in §3.2) af-
ter any such failure event and the PS re-initiates gradient
aggregation by sending an ACK on the new multicast tree
that includes the re-spawned worker for the earliest sequence
number that is yet to be aggregated.

A.4 Dealing with Stragglers
A slow worker or a slow link can slow down the whole training
process. However, this is an artifact of synchronous training
and not an issue with ATP. Note that because ATP alleviates
network bottlenecks as it aggregates gradients in the network,
it reduces the likelihood of network-induced stragglers.

A.5 Comparison to Ring All-reduce Ap-
proach

Ring all-reduce uses one-to-one communication in each train-
ing iteration/round. With this communication pattern, ATP
does not have any opportunity to assist. A drawback of ring
all-reduce is that the amount of data that each worker sends
and receives is higher and is 4(n�1) |U |

n , where n is the num-
ber of workers, |U | is the total number of bytes to be aggre-
gated. With ATP the amount of data that each worker sends
and receives is 2|U |; the amount of data that each PS sends
and receives is 2|U |/m where m is the number of PSs. Quan-
titatively, this indicates that ring all-reduce generates more
network traffic than ATP, which may congest the network for
other running applications in the cluster. We compare ATP
against the ring all-reduce approach (Horovod RDMA and
Horovod TCP) in Figure 8, demonstrating that ATP is better
than ring all-reduce for training popular models.

B Addtional details on dealing with
floating point

ATP converts floating point values to integers by multiply-
ing with a scaling factor to enable gradient aggregation on
programmable switches.



B.1 ATP’s Choice of Scaling Factor
The choice of the scaling factor is crucial. A smaller scaling
factor can lead to rounding-off a lot of digits after the decimal
point and a greater loss in precision. Theoretically, the preci-
sion loss due to this conversion is bounded by n

s (Theorem 1
in [56]), where n is the number of workers and s is the scaling
factor. A large scaling factor can lead to aggregation of large
integers and may cause overflow at the switches. Theoreti-
cally, there is no overflow if gradient values are less than an
upper bound B = 231�n

ns (Theorem 2 in [56]).
Prior work [56] relies on empirical measurements to find

this upper bound B for gradient values of a popular suite of
ML training jobs and chooses a scaling factor s = 231�n

nB . The
precision loss with this choice of scaling factor is bounded by

n2B
231�n .

There are two drawbacks with this approach. First, the
guarantee of no overflows with this approach strictly relies
on obtaining an accurate estimate of the upper bound B on
gradient values. This makes the approach expensive to accom-
modate jobs that train new and unseen models as empirically
determining the value of B for a new model requires an end-
to-end training run. Second, the scaling factor decreases as
the value of B and the number of workers n increase, which
leads to an increasing loss of precision. With 100 workers
and B = 200, the value of the scaling factor is ⇠ 105 and the
maximum loss of precision is ⇠ 10�5 per gradient value. We
sample gradient values below 10�5 in some epochs across
models and find that there are 18% such gradient values for
ResNet50, 42.8% for VGG16 and 39.8% for AlexNet. These
values will experience completed loss of precision, hurting
model accuracy upon training.

With ATP, we choose a high scaling factor so as to min-
imize loss of precision. We note that 32-bit floating point
representation provides the precision of 7 decimal digits [7].
Thus, to provide an equivalent precision, ATP chooses the
scaling factor of 108. The decoupling of the scaling factor
from B completely eliminates the first drawback and partially
eliminates the second drawback described above. However,
a large scaling factor can lead to an overflow of aggregated
gradients.

There are broadly two mechanisms to overcome overflows:
proactive and reactive. ATP chooses a reactive mechanism
(§3.8) because there are drawbacks to using a proactive mech-
anism that we discuss next.

B.2 Pitfalls of Proactive Overflow Mechanism
The proactive mechanism prevents overflows from ever occur-
ring at the switch. It determines a maximum gradient value
threshold B such that, as long as gradient values aggregated
in the switch are less than B, any overflow is avoided. The
value of B (= 231�n

ns ) is computed at each worker during job
initialization. Packets with gradient values  B are aggregated
in the switch, while workers flag packets with gradient values
> B. Packets with this flag are not aggregated in the switch

Job False Positive Packets
ResNet50 - 8 Workers 37,002

ResNet50 - 16 Workers 231,528
ResNet50 - 32 Workers 1,156,126
ResNet50 - 64 Workers 14,602,998

Table 1: Average false positive packets per epoch increase as
workers increase.

and are eventually aggregated at the PS. It is worth noting that
this mechanism naturally fits with the best-effort aggregation
service provided by ATP and cannot be implemented in the
prior SwitchML work.

Unfortunately, a proactive mechanism severely limits the
opportunities for in-network aggregation. With 100 workers
and a scaling factor of 108, the value of B is 0.2. To highlight
this, in Table 1, we measure the number of false positives in a
single epoch when training a ResNet50 model. We classify
a gradient packet with a particular sequence number as a
false positive if the gradient value in that packet is > B but
the aggregated gradient value for that sequence number from
all the workers does not overflow the integer bound (231).
Each false positive packet could have been aggregated in
the switch and consumed in the network, but instead with
the proactive approach ends up traversing the network from
the worker all the way to the PS. As seen in Table 1, the
number of false positive packets gets worse as we increase
the number of workers in a ResNet50 job. This trend applies
to all models, although the magnitude of false positive packets
might change. This is not desirable because a higher number
of false positive packets means that we lose out on in-network
aggregation opportunities and that the number of packets
traversing the link to the PS increases. Thus, increasing false
positive packets leads to an increased likelihood of incast
which only snowballs as the number of workers in the job
increases.

For these reasons, in ATP, we avoid using a proactive mech-
anism and use a reactive mechanism for overflow correction
(§3.8).

B.3 Dynamic Scaling Factor
A static scaling factor can, in the worst case, lead to a very
high overflow correction frequency when the magnitude of
gradient values from all workers is large. In such a case,
reducing the value of the scaling factor will reduce the over-
flow correction frequency and will also not lead to a loss of
precision (as the gradient values are large). Thus, a possi-
ble optimization would be to make dynamic adjustments to
the scaling factor in reaction to the current range of gradient
values in recent iterations, especially for the case when the
number of workers n is large. In our evaluations with popu-
lar models and the scale at which these distributed models
are trained today, we do not see the need for such dynamic



0 10000 20000 30000 40000
Time(s)

50%

70%

90%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
90% Accuracy

(a) ResNet101

10000 20000 30000 40000 50000 60000 70000
Time(s)

50%

60%

75%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
75% Accuracy

(b) VGG19

20000 40000 60000 80000
Time(s)

50%

60%

70%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
70% Accuracy

(c) AlexNet
Figure 18: Time to accuracy

0

20

40

60

Th
ro

ug
hp

ut
 (G

bp
s)

Defualt
TSO
TSO+MP-QP
TSO+MP-QP+Two-Pass

Figure 19: Throughput with different hardware acceleration.

scaling.
However, dynamic scaling adjustments may be beneficial

in the future as new large models emerge and training jobs
scale-out even further. Inspired by SwitchML [56], workers
compute the scaling factor for each gradient in the next win-
dow with s = 231�n

nb (Theorem 2 in [56]), where b is the gradi-
ent value. Workers pick the minimal scaling factor in a packet,
which guarantees there is not any overflow within a packet.
When a tensor aggregation starts, a gradient packet piggy-
backs this value of the subsequent packet, which is sent after
receiving the current packet’s corresponding parameter packet.
The switch computes the minimal scaling factor among work-
ers, which will be carried to the PS. PS can instruct workers
to use this scaling factor only when the overflow happens
frequently. Note that the first gradient packet aggregation for
each tensor can overflow with this approach. SwitchML sends
an empty packet only containing the scaling factor at the be-
ginning of the aggregation for each tensor, which causes one
RTT waste and the finishing time of a tensor can be doubled if
the tensor is small. ATP chooses the reactive approach, where
the cost is one RTT in the worst case that all the gradient
aggregations in the first window overflow. We leave this as
future work.

C Additional Implementation Details
This section supplements the description of ATP’s implemen-
tation in §4.

To increase the packet size processed by the switch, ATP
programs the switch to process each ATP packet twice, which
we refer to as two-pass. The first half of the gradients in
the packet are aggregated in the first pass and the second
half are aggregated in the second pass. Instead of using two

end-to-end (all the way from ingress on a port to egress to
a port) pipelines, which requires two ports to recirculate the
packets, ATP uses the resubmit and recirculate features to-
gether, which allows to re-process the same packet (except the
last packet that completes gradient aggregation) only in the
ingress pipeline of the switch. This avoids using an additional
port at the egress pipeline.

Recall that ATP drops the first n� 1 packets (where, n
is number of workers) after aggregation at the switch, and
writes the aggregated results from the aggregator to the n-th
worker’s gradient packet, where n is the number of workers.
ATP uses resubmit for the first n�1 gradient packets after the
first pass. As the name suggests, this takes the packet from
the end of the ingress pipeline after the first processing pass,
left shifts the packet using the ‘force_shift ingress’ feature
on the parser to drop the data part that has been aggregated
in the first pass, and immediately resubmits this packet to
the ingress pipeline for a second pass to process the second
half of the packet. However, we can not apply the resubmit
feature to the last gradient packet because ATP writes the
first half of the aggregated results to the last packet during
the first pass and a resubmit with left shift will lead to a
loss of this aggregated result. To deal with this, ATP avoids
using the resubmit feature for the last packet. Instead, we
use ‘recirculate’ to enable a second end-to-end pass for the
second half of the last packet. This approach requires only
one additional port to recirculate the last packet. If the next
generation of programmable switches is able to process larger
packet sizes or the NIC supports higher packet processing
rate, ATP will not require a two-pass implementation at the
switch.

D Additional Evaluation Details
This section provides additional evaluation results (§D.1,
§D.3) and supplements some existing results (§D.2).

D.1 Small Packets Optimizations
ATP applies multiple hardware acceleration techniques to
boost throughput with small-packets as mentioned in Sec-
tion 4. We demonstrate the effectiveness of each optimization
by measuring the throughput of the microbenchmark using
configurations that incrementally add more optimizations. We
launch two hosts attached to a single switch, one as a worker,
and the other as PS. The switch logic of ATP is forwarding
packets from the worker to the PS. The PS copies the received
data from the receiver memory region to the sender memory



3 + 3 2 + 5 3 + 3
# of Worker(s) in Each Job

0.0

0.5

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut  VGG16 ResNet50

Figure 20: Multiple jobs.

region and then sends the data back to the worker.
Figure 19 shows the network throughput gains as we pro-

gressively add optimizations. TSO provides the biggest bene-
fit, and increases performance by 3X . Incorporating MP-QP
(§4) at the end hosts further increases performance 1.47X . Fi-
nally, adding aggregation based on two-pass implementation
at the switches increases the throughput by a final 1.3X . Over-
all, ATP’s TSO+MP-QP+Two-Pass optimizations provide a
6X throughput improvement over no hardware acceleration
(Default). We also notice that throughput does not double
between TSO+MP-QP and TSO+MP-QP+Two-Pass when
packet size doubles. This occurs because throughput is bottle-
necked by the memory copy at the PS and workers 4.

In summary, ATP is able to achieve high throughput with
small packets by utilizing recent advances in hardware accel-
eration.

D.2 Switch Resource Sharing
In this section, we study ATP’s dynamic aggregator allocation
approach and observe the impact of the number of workers
and the model size on the performance of contending jobs.
We launch two DT jobs on ATP under various settings.

First, we launch two VGG16 jobs each with 3 workers.
Figure 20 shows the training throughput normalized against
the job in isolation. We see equal throughput, across identical
jobs (same model and number of workers), indicating equal
sharing of switch resources. Also, the throughput reduction
for each of the two jobs is only 10%.

Second, we launch two VGG16 jobs with 5 and 2 workers
each. The job with more workers performs slightly worse
than that with fewer workers (145.6 image/s for 5 v.s. 159.3
image/s for 2 workers).

Third, we launch a VGG16 and a ResNet50 job and ob-
serve only 5% and 10% throughput reduction respectively;
reduction for the large model (5% in VGG16) is less than that
for the small model (10% in ResNet50).

In summary, ATP’s switch resource sharing is equitable for
similar workloads. In the case of different workloads it tends
to favor jobs using fewer workers and larger models.

4The memory copy overhead can be eliminated by proper memory align-
ment. We leave this improvement for future work.

D.3 Time To Accuracy
Figure 18 illustrates the TTA training curve for ResNet101,
VGG19 and AlexNet with the same setting from §5.3.
ResNet101 (Figure 18a) does not see a noticeable speed up
(1.01X in ATP) as it is a compute-intensive model similar to
our measurements in §5.3 (ResNet50 and ResNet152). The
results for VGG19 (Figure 18b) and AlexNet (Figure 18c)
reflect 1.2X and 2.39X speed up, which is consistent with the
training throughput presented in §5.2.1 for communication-
intensive models.


